
Matrox Imaging Library (MIL) 10 Update 34
Release Notes (milGenTL)

August 2017
© Copyright Matrox Electronic Systems Ltd., 1992-2017.

This document outlines what is new with Matrox support for GenTL and explains the current limitations and
particularities.

It also presents last-minute information that did not make it into the manual or on-line help. Note that this help file
serves to complement your manual. The information found in this file overrides your formally documented
material.

Contents

1. MIL Driver for GenTL

1.1 What’s new in MIL 10 Update 34

1.1.1 Standards compliance

1.1.2 Summary of new features

1.1.3 API enhancements

2. Supported operating systems

3. Example locations (in the help file)

4. Last minute information

1. MIL Driver for GenTL

The Matrox GenTL Consumer driver allows you to use a third-party GenTL library (GenTL Producer) with MIL
(GenTL Consumer).

1.1 What’s new in MIL 10 Update 34

1.1.1 Standards compliance
The MIL driver for GenTL supports the following standards:

 GenICam™ GenAPI Standard Version 2.4.1.

 GenICam™ GenTL Standard Version 1.5.

1.1.2 Summary of new features
The following features are new for this release:

 New API to enumerate installed GenTL producer libraries.

 New M_SYSTEM_GENTL system type.

 New API to access multiple GenICam XML description files.

 New API to enumerate GenTL modules.

 New API to display the feature browser.

 New API to hook a MIL callback to a GenICam feature change.

 New API to announce M_GRAB buffers prior to grabbing.

 New API to allocate M_CONTAINER buffers in order to grab from multi-component devices such as a
3D camera.

 New hardware-specific examples:

o CameraEvents, located in Examples\BoardSpecific\CameraEvents\C++. This program
demonstrates new MIL features for managing GenICam™ devices. This program focuses on
hooking a MIL handler to asynchronous camera events.

o ChunkMode, located in Examples\BoardSpecific\ChunkMode\C++. This program shows the
use of the MdigProcess() function to perform real-time acquisition. It also enables your
GenICam™ device in chunk mode (if supported).

o EnumFeatures, located in Examples\BoardSpecific\EnumFeatures\C++. This example shows
how to use MIL in order to enumerate all the features in your GenICam™ compliant device.

o FeatureChangeHook, located in Examples\BoardSpecific\FeatureChangeHook\C++. This
example shows how to use MIL in order to hook a MIL callback function to GenICam™ feature
change events.

o GenTL, located in Examples\BoardSpecific\GenTL\C++. This program demonstrates new MIL
features for managing GenICam GenTL devices using the Matrox GenTL consumer system.

o MultiComponentGrab, located in Examples\BoardSpecific\MultiComponentGrab\C++. This
program shows the use of the MbufAllocDefault() and MdigProcess() function to perform real-
time multi-component acquisition using M_CONTAINER buffers.

1.1.3 API enhancements
Additions to MappInquire()

 New Inquire types:

o M_GENTL_ PRODUCER_COUNT. Specifies the number of installed GenTL producer libraries
available.
UserVarPtr data type info: address of a MIL_INT.

o M_GENTL_PRODUCER_DESCRIPTOR + n. Specifies the selected GenTL producer libraries’
path and filename, where n is the index number of the GenTL producer library.
UserVarPtr data type info: MIL_TEXT_PTR

o M_GENTL_PRODUCER_DESCRIPTOR_SIZE + n. Specifies the size of the selected GenTL
producer libraries’ description, where n is the index number of the GenTL producer library +1.
UserVarPtr data type info: address of a MIL_INT.

Additions to MsysAlloc()

 New system type:

o M_SYSTEM_GENTL. Allocates a MIL GenTL system.

 New combination constant for the SystemNum parameter.

o M_GENTL_PRODUCER(n). Specifies that the nth GenTL producer library will be used by the
MIL system allocation, where n can be a number from 0 to 127.

 New InitFlags

o M_MIXED. Specifies to initialize any available transport layer type interfaces to work with the
Matrox GenTL system.

o M_CL. Specifies to initialize Camera Link® type interfaces to work with the Matrox GenTL
system.

o M_CLHS. Specifies to initialize Camera Link HS™ type interfaces to work with the Matrox
GenTL system.

o M_CXP. Specifies to initialize CoaXPress® type interfaces to work with the Matrox GenTL
system.

o M_GEV. Specifies to initialize GigE Vision® type interfaces to work with the Matrox GenTL
system.

o M_U3V. Specifies to initialize USB 3 Vision™ type interfaces to work with the Matrox GenTL
system.

Additions to MsysInquire():

 New Inquire type:

o M_GENTL_INTERFACE_COUNT. Inquires the number of initialized GenTL interfaces available
to the GenTL producer. Note that this result is limited by the GenTL producer loaded during
MsysAlloc() and the setting of the InitFlag parameter.
UserVarPtr data type: address of a MIL_INT.

Additions to MsysControl(),

 New ControlTypes and associated ControlValues:

o M_GC_FEATURE_BROWSER: Sets whether to display the GenTL system and interface
configuration information interactively. You can specify a combination value with one of the
following:

 + M_GENTL_SYSTEM. Specifies to display the GenTL system configuration information.

 + M_GENTL_INTERFACE_NUMBER(n). Specifies to displays the nth GenTL interface
configuration information, where n is the nth GenTL interface, and n can be a number from 0
to M_GENTL_INTERFACE_COUNT-1.

o M_GC_FEATURE_BROWSER’s control values are as follows:

 M_DEFAULT. Same as M_OPEN.

 M_OPEN. Opens the feature browser. You must specify a combination value from the
following:

o + M_ASYNCHRONOUS. Specifies that this function returns immediately once the
feature browser window opens.

o + M_SYNCHRONOUS. Specifies that this function is blocked until the feature
browser window closes.

 M_CLOSE. Closes the Feature Browser.

New MsysControlFeature() / MsysInquireFeature()

 Same API as MdigControlFeature() / MdigInquireFeature()

 Combination values for the values listed in the For specifying the type of information about the feature
to set and the data type returned table:

o M_GENTL_SYSTEM. Specifies to target the GenTL system XML.

o M_GENTL_INTERFACE_NUMBER(n). Specifies to targets the nth GenTL interface XML,
where n can be a number from 0 to M_GENTL_INTERFACE_COUNT-1.

 M_FEATURE_ENUM_ENTRY_DISPLAY_NAME + n. Inquires the internally-used name of the
specified enumeration entry of the feature, where n is the index into the enumerated list.

 M_FEATURE_USER_ARRAY_SIZE(). Specifies that the feature value is expressed as a string of a
specified size. The M_FEATURE_USER_ARRAY_SIZE() macro passes the size of the user-allocated
buffer (first passed to the MsysInquireFeature's UserVarPtr parameter). See
M_FEATURE_USER_ARRAY_SIZE() in the MIL documentation.

 M_FEATURE_CHANGE_HOOK. Sets whether to enable an event to occur when the value of the
specified feature changes. Once enabled, use MsysHookFunction() with M_FEATURE_CHANGE to
hook a specified function to the feature change event. Repeat for each feature that you want to enable
a feature change event. Alternatively, to enable an event to occur when the value of any feature
changes, use MsysHookFunction() with M_FEATURE_CHANGE + M_ALL.

 Within the hook function, use MsysGetHookInfo() with M_GC_FEATURE_CHANGE_NAME to
retrieve the name of the feature that caused the event.

Additions to MsysHookFunction():

 M_FEATURE_CHANGE. Hooks the function to the event that occurs when the value of a GenICam
GenTL feature changes. The list of potential feature change events is set using MsysControlFeature()
with M_FEATURE_CHANGE_HOOK.

Combination values for M_FEATURE_CHANGE

You can add the following value to M_FEATURE_CHANGE to specify to hook the specified function to
all feature change events.

o M_ALL. Specifies to hook the specified function to all feature change events.

o M_GENTL_SYSTEM: Specifies to hook the specified function to a GenTL system feature
change callback.

o M_GENTL_INTERFACE_NUMBER(n): Specifies to hook the specified function to a nth GenTL
interface feature change callback, where n can be a number from 0 to
M_GENTL_INTERFACE_COUNT-1.

Additions to MsysGetHookInfo():

The following allows you to retrieve information from a GenTL feature change event. These information
types are only available if MsysGetHookInfo() was called from a function hooked to GenTL feature change
event using MsysHookFunction() with M_FEATURE_CHANGE.

 M_GC_FEATURE_CHANGE_NAME: Retrieves the name of the GenTL feature that changed.
UserVarPtr data type: array of type MIL_TEXT_CHAR. Required array size: MsysGetHookInfo() with
M_GC_FEATURE_CHANGE_NAME_SIZE

 M_GC_FEATURE_CHANGE_NAME_SIZE: Retrieves the string length of the feature name that
changed.
UserVarPtr data type: address of a MIL_INT.

Additions to MdigInquire():

 M_GENTL_INTERFACE_INDEX. Inquires the number of GenICam GenTL camera interface that is
associated to the specified digitizer.
UserVarPtr data type: address of a MIL_INT.

 M_GENTL_STREAM_COUNT. Inquires the number of GenTL streams associated to the specified
digitizer.
UserVarPtr data type: address of a MIL_INT.

Additions to MdigControl():

 M_GC_FEATURE_BROWSER: Displays the Matrox feature browser containing the GenTL device,
remote device, and stream XMLs. You can specify a combination value with one of the following:

o M_GENTL_DEVICE. Displays the GenTL device’s configuration information.

o M_GENTL_REMOTE_DEVICE. Displays the GenTL remote device (camera) configuration
information.

o M_GENTL_STREAM_NUMBER(n). Displays the nth GenTL stream configuration information,
where n is a number from 0 to M_GENTL_STREAM_COUNT-1.

 M_GENTL_ANNOUNCE_BUFFER. Sets the buffer to announce to the GenTL producer, before
starting the acquisition with MdigGrab(). Note that it is not necessary to announce buffers used with
MdigGrabContinuous() or MdigProcess().

o MIL buffer identifier. Specifies the buffer to announce to the GenTL producer.

 M_GENTL_REVOKE_BUFFER. Revokes a previously announced buffer. Note that acquisition must
be stopped before revoking a buffer.

o MIL buffer identifier. Specifies the buffer to revoke from the GenTL producer. Note that this
buffer must have been previously announced using M_GENTL_ANNOUNCE_BUFFER.

Additions to MdigControlFeature() / MdigInquireFeature():

 New combination constants for the ControlType parameter:

o M_GENTL_DEVICE. Specifies the GenTL device’s configuration information.

o M_GENTL_REMOTE_DEVICE (Default). Specifies the GenTL remote device’s configuration
information (such as, the camera).

o M_GENTL_STREAM_NUMBER(n). Specifies the nth GenTL stream’s configuration
information.

 The FeatureType parameter has been changed to UserVarType. This was done to simplify writing
code with MdigControl/InquireFeature(). UserVarType must always reflect the type of the pointer
passed to the UserVarPtr parameter. Legacy code is transparently supported, but we recommend you
update your code. Note that M_TYPE_REGISTER now becomes M_TYPE_UINT8,
M_TYPE_ENUMERATION now becomes M_TYPE_INT64 or M_TYPE_STRING, and
M_TYPE_COMMAND now becomes M_DEFAULT. Data type conversions are made, whenever
possible, in cases where the feature’s “native” data type is different than the UserVarType supplied.
Regardless of a feature’s “native” data type it can always be read as a string. See hardware-specific
examples for details.

The following is a list of example calls using the new UserVatType:

 MdigControlFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“Width”), M_TYPE_INT64,
&Int64Var)

 MdigControlFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“Gain”),
M_TYPE_DOUBLE, &DoubleVar)

 MdigControlFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“ReverseX”),
M_TYPE_BOOLEAN, &BoolVar)

 MdigControlFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“PixelFormat”),
M_TYPE_STRING, MIL_TEXT(“Mono8”))

 MdigControlFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“LUTValueAll”),
M_TYPE_UINT8, Uint8Array)

 MdigControlFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“AcquisitionStart”),
M_DEFAULT, M_NULL)

 MdigInquireFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“Width”), M_TYPE_INT64,
&Int64Var)

 MdigInquireFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“Gain”),
M_TYPE_DOUBLE, &DoubleVar)

 MdigInquireFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“ReverseX”),
M_TYPE_BOOLEAN, &BoolVar)

 MdigInquireFeature(MilDigitizer, M_FEATURE_VALUE + M_STRING_SIZE, MIL_TEXT
(“PixelFormat”), M_TYPE_MIL_INT, &MilIntVar)

 MdigInquireFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“PixelFormat”),
M_TYPE_STRING, MilTextCharArray)

 MdigInquireFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“LUTValueAll”),
M_TYPE_UINT8, Uint8Array)

 M_FEATURE_USER_ARRAY_SIZE() can now be used with MdigInquireFeature when the data type
returned is a string or an array of bytes (register). The M_FEATURE_USER_ARRAY_SIZE() macro is
used to pass the size of the user-allocated buffer passed to MdigInquireFeature's UserVarPtr
parameter. M_FEATURE_USER_ARRAY_SIZE() is passed using the UserVarType parameter. See
GenTL hardware-specific example for sample usage.

The following is a list of example calls using M_FEATURE_USER_ARRAY_SIZE():

o MdigInquireFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“PixelFormat”),
M_TYPE_STRING + M_FEATURE_USER_ARRAY_SIZE(N), MilTextCharArray); N being
equal to the number of MIL_TEXT_CHAR in the MilTextCharArray.

o MdigInquireFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“LUTValueAll”),
M_TYPE_UINT8 + M_FEATURE_USER_ARRAY_SIZE(N), Uint8Array); N being equal to the
number of Uint8 in the Uint8Array.

 M_FEATURE_ENUM_ENTRY_DISPLAY_NAME can now be used to inquire possible enumeration
string entry to use for display purposes. See M_FEATURE_ENUM_ENTRY_NAME in the MIL
documentation.

 M_FEATURE_VALUE_AS_STRING is now deprecated.

o To read a feature’s value as a string and get the required string length use:

 MdigInquireFeature(MilDigitizer, M_FEATURE_VALUE + M_STRING_SIZE, MIL_TEXT
(“Width”), M_TYPE_MIL_INT, &MilIntVar);

o To read a feature’s value as a string use:

 MdigInquireFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“Width”),
M_TYPE_STRING+M_FEATURE_USER_ARRAY_SIZE(ArraySize), MilTextCharArray);

o To write a feature’s value from a string use:

 MdigControlFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“Width”),
M_TYPE_STRING, MIL_TEXT(“1024”));

 M_FEATURE_CHANGE_HOOK. Identifies the specified FeatureName to trigger the
M_FEATURE_CHANGE hook callback. You must be hooked to the M_FEATURE_CHANGE hook
type using MdigHookFunction().

Additions to MdigHookFunction():

 M_FEATURE_CHANGE. Hooks the function to the event that occurs when a specified feature
changes. The list of potential feature change events is set using MdigControlFeature() with
M_FEATURE_CHANGE_HOOK.

You can add the following value to the above-mentioned value to specify to hook the specified function
to all featue change events.

o M_ALL. Specifies to hook the specified function to all feature change events.

o M_GENTL_DEVICE: Specifies to hook the specified function to a GenTL device feature change
event.

o M_GENTL_REMOTE_DEVICE: Specifies to hook the specified feature change to a GenTL
remote device feature change event.

o M_GENTL_STREAM_NUMBER(n): Specifies to hook the specified feature change to the nth

GenTL stream feature change event.

Additions to MdigGetHookInfo():

The following allows you to retrieve information from a GenICam feature change event. These information
types are only available if MdigGetHookInfo() was called from a function hooked to GenICam feature
change event using MdigHookFunction() with M_FEATURE_CHANGE.

 M_GC_FEATURE_CHANGE_NAME: Retrieves the name of the GenICam feature that changed.
UserVarPtr data type: array of type MIL_TEXT_CHAR
Required array size: MdigGetHookInfo() with M_GC_FEATURE_CHANGE_NAME_SIZE.

 M_GC_FEATURE_CHANGE_NAME_SIZE: Retrieves the string length of the feature name that
changed.
UserVarPtr data type: address of a MIL_INT.

New function:
MbufAllocDefault(MIL_ID SystemId, MIL_ID ReferenceId, MIL_INT64 Attribute, MIL_INT64 ControlFlag,
MIL_INT64 ControlValue, MIL_ID* BufIdVarPtr):

This function allocates a MIL data buffer on the specified system.

 SystemId: Specifies the MIL system on which to allocate the buffer. This parameter should be set to a
MIL GenTL system.

 ReferenceId: Specifies the source from which retrieve additional information about the buffer to
allocate (such as, the size of the buffer and number of bands). The ReferenceId can be a buffer, a
digitizer, or a display. M_DEFAULT will retrieve buffer information from the MilConfig utility.

 Attribute: Specifies usage of the buffer.

o M_CONTAINER: Specifies a container to store either multiple component containers, or a list of
related MIL buffers.

 M_3D_SCENE: Specifies a multi-component container. This container can be used to store
images representing data coming from a 3D camera.

You can use one or more of the following values in combination with each other and with the
above-mentioned values, to specify the container’s usage.

 M_DISP: Specifies a container that can be displayed.

 M_GRAB: Specifies a container into which to grab data.

 M_PROC: Specifies a container that can be processed.

 ControlFlag: Specifies the operation to perform.

o M_DEFAULT: Specifies to perform buffer allocation using the information specified. The
ControlValue must be set to M_DEFAULT.

 ControlValue: Parameter value associated to the ControlFlag parameter. See ControlFlag parameter
for more details.

 BufIdVarPtr: Specifies the address of the variable in which to write the buffer or container identifier.

 Return value: The returned value is the buffer or container identifier. If allocation fails, M_NULL is
returned.

Additions to MbufControl():

 M_GC_FEATURE_BROWSER: Displays the Matrox feature browser containing the GenTL buffer
configuration information. You can specify a combination value with the following:

o + M_GENTL_BUFFER. Displays the GenTL buffer configuration information.

Additions to MbufInquire() for M_CONTAINER buffers:

 M_COMPONENT_COUNT: Inquires the number of components in the container.
UserVarPtr Data type: address of a MIL_INT.

 M_COMPONENT_ID(MIL INT ComponentType): Inquires the identifier of the component in the
container.

Parameters

o ComponentType. This parameter specifies the type of buffer for which the identifier must be
returned. ComponentType can take one of the following MIL pre defined constants. However if
the camera supports the ComponentIDValue SNFC feature then the ComponentType must be
set to the camera’s ComponentIDValue associated to the component to get.

 M_INTENSITY: Returns the MIL_ID of the buffer representing the intensity of the image.

 M_INFRARED: Returns the MIL_ID of the buffer representing an image acquired in the
infrared band.

 M_ULTRAVIOLET: Returns the MIL_ID of the buffer representing an image acquired in the
ultraviolet band.

 M_RANGE: Returns the MIL_ID of the buffer representing 3D range information.

 M_DISPARITY: Returns the MIL_ID of the buffer representing the disparity information of a
stereoscopic 3D camera.

 M_CONFIDENCE: Returns the MIL_ID of the buffer representing to the confidence map data
of a 3D camera.

 M_SCATTER: Returns the MIL_ID of the buffer associated to the scatter data. This represents
how much light is scattered around the reflected light.

 M_REFLECTANCE: Returns the MIL_ID of the buffer associated to the reflected intensity of
the image.

 M_COMPONENT_ID_BY_INDEX(MIL_INT ComponentCount): Inquires the identifier of the
component in the container at a specified index.

Parameters

o ComponentCount. This parameter specifies the index of the component in the container. This
value can be from 0 to M_COMPONENT_COUNT-1.

 M_DATA_INFO_TYPE: Inquires the type of information stored in the buffer: UserVarPtr should be set

to the address of a MIL_INT.

o For M_CONTAINER buffers:

 M_3D_SCENE: Specifies that the container is a multi-component buffer representing 3D data.

o For M_IMAGE buffers:

 M_NULL: Specifies that the image buffer is not part of a container buffer.

 M_INTENSITY: Specifies that the buffer is part of a container buffer and contains the intensity
of the image.

 M_INFRARED: Specifies that the buffer is part of a container buffer and contains an image
acquired in the infrared band.

 M_ULTRAVIOLET: Specifies that the buffer is part of a container buffer and contains an image
acquired in the ultraviolet band.

 M_RANGE: Specifies that the buffer is part of a container buffer and contains 3D range
information.

 M_DISPARITY: Specifies that the buffer is part of a container buffer and contains the disparity
information of a stereoscopic 3D camera.

 M_CONFIDENCE: Specifies that the buffer is part of a container buffer and contains the
confidence map data of a 3D camera.

 M_SCATTER Specifies that the buffer is part of a container buffer and contains the associated
to the scatter data.

 M_REFLECTANCE: Specifies that the buffer is part of a container buffer and contains the
reflected intensity of the image.

New MbufControlFeature() / MbufInquireFeature()

 Same API as MdigControlFeature() / MdigInquireFeature()

 Combination constants for the ControlType / InquireType parameter

The following value might be combined with the ControlType / InquireType values to specify to
control/Inquire the GenTL buffer configuration information.

o M_GENTL_BUFFER. This is the default value. Specifies to control/inquire the GenTL buffer
configuration information.

 M_FEATURE_CHANGE_HOOK. Identifies the specified FeatureName to trigger the
M_FEATURE_CHANGE hook callback. You must be hooked to the M_FEATURE_CHANGE hook
type using MbufHookFunction().

Additions to MbufHookFunction():

 M_FEATURE_CHANGE Hooks the function to the event that occurs when the value of a GenTL
buffer feature changes. To enable an event to occur when the value of a specific feature changes, use
MbufControlFeature() with M_FEATURE_CHANGE_HOOK set to M_ENABLE. Repeat for each
feature that you want to enable a feature change event. To enable an event to occur when the value of
any feature changes, use M_FEATURE_CHANGE + M_ALL.

Within the hook function, use MbufGetHookInfo() with M_GC_FEATURE_CHANGE_NAME to retrieve
the name of the feature that caused the event.

You can add the following value to the above-mentioned value to specify to hook the specified function
to all featue change events.

o M_ALL. Specifies to hook the specified function to all feature change events.

o M_GENTL_BUFFER: Specifies to hook the specified function to GenTL buffer feature change
events.

Additions to MbufGetHookInfo():

The following allows you to retrieve information from a GenTL feature change event. These information types are
only available if MbufGetHookInfo() was called from a function hooked to GenTL feature change event using
MbufHookFunction() with M_FEATURE_CHANGE.

 M_GC_FEATURE_CHANGE_NAME: Retrieves the name of the GenICam feature that changed.
UserVarPtr data type: array of type MIL_TEXT_CHAR.
Required array size: MdigGetHookInfo() with M_GC_FEATURE_CHANGE_NAME_SIZE

 M_GC_FEATURE_CHANGE_NAME_SIZE: Retrieves the string length of the feature name that
changed.
UserVarPtr data type: array of a MIL_INT.

2. Supported operating systems

This section lists all the operating systems that the Matrox GenTL system supports.

 32-bit Windows® 7.

 64-bit Windows® 7.

 32-bit Windows® 8.1.

 64-bit Windows® 8.1.

 32-bit Windows® 10.

 64-bit Windows® 10.

3. Example locations (in the help file)

In the help file, the location information written at the top of examples might not be up-to-date. Use MIL
Example Launcher to find an example on disk.

4. Last minute information

A problem has been found when MIL 10 Processing Pack 1 is installed after MIL 10 Update 34. The MIL 10
Processing Pack 1 installer will overwrite MIL import libraries that are provided by MIL 10 Update 34. The
following functions will therefore no longer link:

 MsysControlFeature
 MsysInquireFeature

 MbufControlFeature
 MbufInquireFeature

To resolve this issue, re-install MIL 10 Update 34 or make sure to install MIL 10 Processing Pack 1 before
installing MIL 10 Update 34.

