
Matrox Imaging Library (MIL) 10 Update 49
Matrox Radient eV-CL release notes

September 2017
 (c) Copyright Matrox Electronic Systems Ltd., 1992-2017.

This document outlines what is new with the MIL 10 driver for the Matrox Radient eV-CL and explains the current limitations and
particularities.

It also presents last-minute information that did not make it into the manual or on-line help. Note that this help file serves to
complement your manual. The information found in this file overrides your formally documented material.

Contents

1. MIL 10 driver for Matrox Radient eV-CL
1.1 What’s new in MIL 10 Update 49

1.1.1 Standards compliance
1.1.2 Summary of new features
1.1.3 API enhancements
1.1.4 Known limitations and particularities
1.1.5 Software bug fixes
1.1.6 Firmware bug fixes
1.1.7 Behavior changes

1.2 What’s new in MIL 10 Update 27
1.2.1 Standards compliance
1.2.2 Summary of new features
1.2.3 API enhancements

2. Supported operating systems
3. Location of examples (in the help file)

1. MIL 10 driver for Matrox Radient eV-CL

1.1 What’s new in MIL 10 Update 49
Note that MIL 10 Update 49 is a cumulative update, including all content from MIL Update 27.

1.1.1 Standards compliance
The MIL 10 driver for Matrox Radient eV-CL supports the following standards:

 Camera Link® version 2.0.

 GenICam™ standard version 3.0.1.

 GenICam™ for Camera Link® (CLProtocol). Note that this requires a third-party CLProtocol communication library (DLL)
which is supplied by the camera vendor.

 GenICam™ GenCP Camera Link Module version 1.0.

1.1.2 Summary of new features
The following features are new for this release:

 Added support for Teledyne DALSA Linea and Teledyne e2v Eliixa line-scan color cameras.

The missing red or blue value of a destination pixel is interpolated from the left and right values in the source; whereas the
green value of a destination pixel is used as is from the source.

 Added support for hardware gain and offset correction per pixel; see M_SHADING_CORRECTION below.

 Added support to debounce any of the auxiliary input signals (the default is the same as Update 27 but can be configured
using a DCF).

 Added a pulse signal multiplier on all auxiliary input signals (configured using a DCF).

 Added new control types to deal with triggers that happen while the grab and timers are active; see
M_GRAB_TRIGGER_OVERLAP and M_TIMER_TRIGGER_OVERLAP below.

 Added new control types that allow the rotary decoder to start generating triggers only upon reaching a set counter value
and then to generate a trigger at a set interval (change) in counter value; see M_ROTARY_ENCODER_* below.

 Added a timer trigger divider; see M_TIMER_TRIGGER_RATE_DIVIDER below.

1.1.3 API enhancements

 Additions to MdigControl()/MdigInquire():

M_SHADING_CORRECTION Sets whether to perform a gain and offset correction per
pixel. When grabbing to a buffer in Host memory, your
digitizer performs the shading correction operation using
following equation:

(Grab Image x M_SHADING_CORRECTION_GAIN_ID) +
M_SHADING_CORRECTION_OFFSET_ID

Each row of gain and offset values is applied to the
equivalent row of the grabbed image. To set the gain and
provide an offset for shading correction, use
M_SHADING_CORRECTION_OFFSET_ID and
M_SHADING_CORRECTION_GAIN_ID, respectively.

M_ENABLE Enables shading correction.

M_DISABLE Disables shading correction.

M_SHADING_CORRECTION_GAIN_ID Sets the buffer containing the gain values that your
digitizer should use when it performs a shading
correction.

To enable on-board shading correction and provide an
offset, use M_SHADING_CORRECTION and
M_SHADING_CORRECTION_OFFSET_ID, respectively.

M_NULL Specifies to not apply a gain when performing a shading
correction.

ShadingCorrectionGainID Specifies the identifier of an M_IMAGE buffer containing
the gain values. The buffer must be allocated as a single-
band unsigned 8-bit or unsigned 16-bit buffer. It is
interpreted as a fixed point buffer with 2-bits for the
numerical part. Use
M_SHADING_CORRECTION_GAIN_FIXED_POINT to
set the number of bits for the fractional part.

It can have an X-size of up to 16384 pixels and a Y-size
equal to the size of the DCF.

M_SHADING_CORRECTION_GAIN_FIXED_POINT Sets the number of bits for the fraction part of the fixed
point gain value that your digitizer should use when it
performs a shading correction.

To enable on-board shading correction and provide an
offset, use M_SHADING_CORRECTION,
M_SHADING_CORRECTION_GAIN_ID, and
M_SHADING_CORRECTION_OFFSET_ID, respectively.

0<= Value <16 Specifies the fractional part of the fixed point gain value.

M_SHADING_CORRECTION_OFFSET_ID Sets the buffer containing the offset values that your
digitizer should use when it performs a shading
correction.

To enable on-board shading correction and provide a
gain, use M_SHADING_CORRECTION and
M_SHADING_CORRECTION_GAIN_ID, respectively.

M_NULL Specifies to not apply an offset when performing a
shading correction.

ShadingCorrectionOffsetID Specifies the identifier of an M_IMAGE buffer containing
the offset values. The buffer must be allocated as a
signed 8-bit or signed 16-bit buffer.

M_GRAB_TRIGGER_OVERLAP Sets how to deal with a new trigger that occurs while a
grab is in progress.

M_DEFAULT Same as M_RESET or value specified in DCF.

M_PREVIOUS_FRAME Specifies that a trigger received, while the grab is in
progress, will be latched (stored). As soon as the current
grab finishes, a new grab will be started.

M_OFF Specifies that a new trigger is ignored.

M_RESET Specifies that the current grab will be immediately
stopped and a new grab will be started.

M_ROTARY_ENCODER_POSITION_START_TRIGGER
 (+ M_ROTARY_ENCODERn)

Sets the rotary decoder's counter value upon which to
start generating triggers, when
M_ROTARY_ENCODER_OUTPUT_MODE is set to
M_POSITION_TRIGGER_MULTIPLE. If it is not set to
this value, then
M_ROTARY_ENCODER_POSITION_START_TRIGGER
is ignored.

0 < Value <= 0xFFFFFFFF Specifies the value of the counter upon which to start
generating triggers.

M_ROTARY_ENCODER_OUTPUT_MODE
(+ M_ROTARY_ENCODERn)

Sets the rotary decoder's counter value and/or the
direction of movement upon which the rotary decoder
should output a pulse.

additional
control
values found
in references

M_POSITION_TRIGGER_MULTIPLE Specifies to start triggering only when the counter value
set with
M_ROTARY_ENCODER_POSITION_START_TRIGGER
is reached and then to generate a trigger at a set interval
(change) in counter value. Set the interval with
M_ROTARY_ENCODER_POSITION_TRIGGER.

M_ROTARY_ENCODER_POSITION_TRIGGER
(+ M_ROTARY_ENCODERn)

Sets the rotary decoder's counter value at which a trigger
is generated.

0 < Value <= 0xFFFFFFFF Specifies the counter value or change in counter value at
which to generate a trigger.

If M_ROTARY_ENCODER_OUTPUT_MODE is set to
M_POSITION_TRIGGER_MULTIPLE, this will specify
the change in counter value at which to generate a
trigger, beginning at the counter value specified by
M_ROTARY_ENCODER_POSITION_START_TRIGGER.

If M_ROTARY_ENCODER_OUTPUT_MODE is set to
M_POSITION_TRIGGER, this will specify the counter
value at which to generate a trigger each time this value
is reached.

If M_POSITION_TRIGGER is set to any other control
value, this value will be ignored.

M_TIMER_TRIGGER_OVERLAP + M_TIMERn Sets how to deal with a new trigger that occurs while the
associated timer has not yet expired (both its delay and
duration).

M_DEFAULT Same as M_RESET or value specified in DCF.

Example 1

In the following code snippet, an encoder is used to trigger a grab when a certain position is reached. 20 frames of 1000 lines
each, or 20000 lines, are grabbed at which point the grab moves slightly to the right and repeats the process in reverse. The
LinearEncoderScan animation, found on the RadienteVCLAnimation page in this section of the help file, illustrates this
example.

/* The camera must be set to trigger the acquisition of a line on the rising edge of the timer output
signal. */

/* Reset the decoder counter to 0. */
MdigControl(MilDigitizer, M_ROTARY_ENCODER_POSITION, 0);

/* Program the timer to trigger on a decoder signal. */
MdigControl(MilDigitizer, M_TIMER_CLOCK_SOURCE, M_SYSCLK);
MdigControl(MilDigitizer, M_TIMER_DELAY, timerDelayInUs);
MdigControl(MilDigitizer, M_TIMER_DURATION, timerDurationInUs);
MdigControl(MilDigitizer, M_TIMER_TRIGGER_SOURCE, M_ROTARY_ENCODER);
MdigControl(MilDigitizer, M_TIMER_STATE, M_ENABLE);

/* Program the decoder to start triggering when position 1000 is reached
 then continue triggering at a multiple of '1'. */
MdigControl(MilDigitizer, M_ROTARY_ENCODER_OUTPUT_MODE, M_POSITION_TRIGGER_MULTIPLE);
MdigControl(MilDigitizer, M_ROTARY_ENCODER_POSITION_START_TRIGGER, 1000);
MdigControl(MilDigitizer, M_ROTARY_ENCODER_POSITION_TRIGGER, 1);

/* Start MdigProcess to grab a sequence (strip) of 20 frames of 1000 lines each for
 a total of 20000 lines (bufferingSize == 20). */
MdigProcess(MilDigitizer, MilGrabBufferList, bufferingSize,

M_SEQUENCE, M_SYNCHRONOUS, ProcessingFunction, &UserHookData);

/* Once the end of sequence is reached, the stage will start scanning in the
 other direction (the decoder counter will decrement). */
/* Program the decoder to start triggering when counter value 21000 is reached
 then continue triggering at a multiple of '1'. */
MdigControl(MilDigitizer, M_ROTARY_ENCODER_POSITION_START_TRIGGER, 21000);

/* Start MdigProcess to grab a sequence of 20 frames of 1000 lines each for
 a total of 20000 lines (bufferingSize == 20). */
MdigProcess(MilDigitizer, MilGrabBufferList, bufferingSize,

M_SEQUENCE, M_SYNCHRONOUS, ProcessingFunction, &UserHookData);

Example 2

In the following code snippet, the board’s decoder is set to trigger a pulse only when a linear stage is moving forward. The
counter decrements when the stage moves in reverse. The grab is only triggered when the counter hits a new positive value; as
such, no line that was already grabbed will be grabbed again. The RotaryLogScan animation, found on the
RadienteVCLAnimation2 page in this section of the help file, illustrates this example.

M_LATCH Specifies that a trigger received, while the associated
timer has not expired, will be latched (stored). As soon as
the current timer expires, a new trigger is issued.

M_OFF Specifies that a new trigger is ignored.

M_RESET Specifies that a new trigger automatically resets the timer
(regardless of whether it is in its delay or active period)
and then restarts the timer. This process will repeat for
each new trigger received.

M_TIMER_TRIGGER_RATE_DIVIDER Sets the frequency to accept trigger pulses (for example,
if set to 2, the first trigger pulse is ignored and the second
is accepted).

M_DEFAULT Specifies the default value; the default value is 1.

1 <= Value <= 255 Specifies the frequency with which to accept a trigger out
of a series of trigger pulses. Note that, if set to 1, all
trigger pulses are accepted.

/* The camera must be set to trigger the acquisition of a line on the rising edge of the timer output
signal. */

/* Set the rotary decoder to send a trigger only when the stage is moving forward. */
MdigControl(MilDigitizer, M_ROTARY_ENCODER_DIRECTION, M_FORWARD);

/* Specifies to set the counter to 0xFFFFFFFF upon a decrement. */
MdigControl(MilDigitizer, M_ROTARY_ENCODER_FORCE_VALUE_SOURCE, M_STEP_BACKWARD_WHILE_POSITIVE);

/* Specifies to output a pulse upon a rotary decoder counter increment, only if the counter value is in the
range of 0x0 to 0x7FFFFFFF
 before the increment occurs; when interpreting the counter value as signed, this would be the positive
counter value range. */
MdigControl(MilDigitizer, M_ROTARY_ENCODER_OUTPUT_MODE, M_STEP_FORWARD_WHILE_POSITIVE);

/* Set the rotary decoder counter to 0. */
MdigControl(MilDigitizer, M_ROTARY_ENCODER_POSITION_TRIGGER, 0);

/* Set the signal that the timer should output at every rotary decoder trigger. */
MdigControl(MilDigitizer, M_TIMER_DELAY, timerDelayInUs);
MdigControl(MilDigitizer, M_TIMER_DURATION, timerDelayInUs);

/* Specifies to use the output (set with M_ROTARY_ENCODER_OUTPUT_MODE) of the default rotary decoder as the
trigger source. */
MdigControl(MilDigitizer, M_TIMER_TRIGGER_SOURCE, M_ROTARY_ENCODER);

/* The trigger rate divider can be used to reduce the trigger rate. */
MdigControl(MilDigitizer, M_TIMER_TRIGGER_RATE_DIVIDER, 1);

/* Enable the timer. */
MdigControl(MilDigitizer, M_TIMER_STATE, M_ENABLE);

/* Start the processing. The processing function is called with every frame grabbed. */
MdigProcess(MilDigitizer, MilGrabBufferList, MilGrabBufferListSize,

M_START, M_DEFAULT, ProcessingFunction, &UserHookData);

1.1.4 Known limitations and particularities

 The Bayer conversion hardware supports a maximum line width of 8196 bytes.

1.1.5 Software bug fixes

 Fixed issues with M_DATA_LATCH_* and M_GRAB_FRAME_BURST_* when grabbing from digitizer devices other than
device 0.

 Fixed an issue with M_GRAB_FRAME_MISSED when used with MdigProcess() and M_TRIGGER_FOR_FIRST_GRAB.

 Fixed an issue when performing a Bayer conversion from a multi-tap with adjacent-Y line scan camera.

 Fixed an issue with MdigHookFunction(M_GRAB_START) when grabbing with MdigGrabContinuous().

 Fixed an issue when grabbing from an interlaced camera.

 Fixed issues when grabbing in frame bursts with multi-tap cameras.

 The default value of M_GRAB_FRAME_BURST_MAX_TIME is now M_INFINITE.

1.1.6 Firmware bug fixes

 Fixed a potential freeze on computers with an Intel® Xeon® Processor E5-2600 series.

 Fixed a case where a missed frame could be erroneously reported.

 Fixed a case where more then one trigger could be detected when triggering on a falling edge.

 Modified the default PoCL (Power-over CameraLink) drop-out time from 80 ms to 160 ms. Note that the CameraLink
specification requires 100 ms.

 Fixed a clock domain crossing issue when using an auxiliary signal to end a grab frame burst (using MdigControl() with
M_GRAB_FRAME_BURST_END_TRIGGER_SOURCE).

1.1.7 Behavior changes

 When dealing with a DCF for a multi-tap camera that divides its image into multiple regions, if the camera sends multiple
adjacent pixels per region along the Y-axis, the ordering of the regions and adjacent pixels has changed. Instead of
enumerating the regions along the X-axis before the adjacent pixels along the Y-axis, the adjacent pixels along the Y-axis
are enumerated before regions along the X-axis. To revert to the previous behaviour, load the DCF in Matrox Intellicam
and adjust the enumeration of regions and adjacent pixels on the Tap Configuration tab of the DCF dialog. When dealing
with a DCF that does not fit the above-mentioned requirement, the order has not changed.

For example, when dealing with a 4-tap DCF with the following configuration:

1.2 What’s new in MIL 10 Update 27

1.2.1 Standards compliance
The MIL 10 driver for Matrox Radient eV-CL supports the following standards:

 Camera Link® version 2.0.

 GenICamTM standard version 2.3.1.

 GenICam™ for Camera Link® (CLProtocol). Note that this requires a third party CLProtocol communication DLL provided
by the camera vendor.

 GenICam™ GenCP Camera Link Module version 1.0.

1.2.2 Summary of new features
The following features are new for this release:

 Added support for all Camera Link Full 80-bit modes, including 10-tap 8-bit and 8-tap 10-bit cameras. These DCFs are
produced using Matrox Intellicam.

 Added automatic hardware Bayer conversion from 8-bit or 10-bit Bayer cameras to packed or planar buffers in Host
memory. The maximum line width is 8196 pixels in 8-bit and 4096 pixels in 10-bit.

 New API to latch information for each grabbed frame. See M_DATA_LATCH_* in the online help.

 New API to grab multiple frames for each grab command. This is useful when grabbing at very high frame rates. See

M_GRAB_FRAME_BURST_* below.

 Added a second pulse for timer signals. See M_TIMER_DURATION2 and M_TIMER_DELAY2 below.

 Added Deserializer Setup tool in MILConfig. This tool is used to find and save in the DCF the values needed for the
deserializer alignment process. It is only recommended to use this tool when using cables longer than 7 meters.

 Added the following MIL hardware-specific examples:

o DataLatch.cpp. This example is located in ...\examples\board-specific\DataLatch\c++. It demonstrates how the Data
Latch API latches information at each grabbed frame (such as, timestamps and quadrature encoder positions).

o FrameBurst.cpp. This example is located in …\examples\board-specific\FrameBurst\c++. It demonstrates how the
frame burst API can be used to aggregate multiple frames into each grab command.

o Clprotocol.cpp. This is a Matrox Radient eV-CL specific example. It demonstrates the use of GenICam™ for
Camera Link® CLProtocol and enables the use of MdigControlFeature() and MdigInquireFeature() to control
camera features (parameters), as well as enabling the use of the feature browser dialog window.

o Enumfeatures.cpp. This is a GenICam-specific example. It demonstrates how to enumerate all the features in your
GenICam compliant device in a MIL application. The example is located in ...\examples\board-
specific\enumfeatures\c++.

1.2.3 API enhancements

 Additions to MdigControlFeature()/MdigInquireFeature():

o M_FEATURE_ENUM_ENTRY_DISPLAY_NAME + n. Inquires the display name of the specified enumeration entry
of the specified feature, where n is the index of the enumerated list. See M_FEATURE_ENUM_ENTRY_NAME in
the MIL documentation.

o M_STRING_ARRAY_SIZE(). Specifies that the feature value is expressed as a string of a specified size. The
M_STRING_ARRAY_SIZE() macro passes the size of the user-allocated buffer (first passed to the
MdigInquireFeature's UserVarPtr parameter). See M_STRING_ARRAY_SIZE() in the MIL documentation.

 Additions to MdigControl()/MdigInquire():

 Note that the control types that can be combined with M_TIMERn are marked below. For information about M_TIMERn,
refer to MdigControl() /MdigInquire().

M_TIMER_DELAY2 + M_TIMERn Sets the delay between the end of the first active portion of the timer
output signal and the start of the second pulse.

M_DEFAULT Specifies the default value. This is the same as specified
in the DFC or, if not specified in the DCF, 0.

Value > 0 Specifies the delay, in nsec.

M_TIMER_DURATION2 + M_TIMERn Sets the duration for the active portion of the second pulse of the
timer output signal.

M_DEFAULT Specifies the default value. This is the same as specified
in the DFC or, if not specified in the DCF, 0.

Value > 0 Specifies the duration of the active portion of the second
pulse of the timer output signal, in nsec.

M_GRAB_FRAME_BURST_SIZE Specifies the number of frames grabbed into the same buffer at each
grab command. The size Y of the grab buffer must be equal to
(height of the frame * M_GRAB_FRAME_BURST_SIZE).

M_DEFAULT Same as 1.
1 <= Value <= 1023 Sets the number of frames grabbed.

M_GRAB_FRAME_BURST_MAX_TIME Specifies the maximum amount of time to wait for all the frames to be
grabbed in the multi-frame buffer. The timer starts when the first
frame is grabbed.

The number of frames in the buffer can be inquired using
MdigGetHookInfo() with M_GRAB_FRAME_BURST_COUNT.

This is useful when the camera stops sending frames and the multi-
frame buffer is only partially full.

M_DEFAULT Same as M_INFINITE.

0.000008 <= Value <= 1.000000 Specifies the maximum amount of time to wait, in sec.

M_INFINITE Specifies to wait indefinitely.

M_GRAB_FRAME_BURST_END_TRIGGER_SOURCE Specifies the signal from which a rising edge signals the end of a
multi-frame sequence. This is useful to force a partially completed
multi-frame buffer to complete.

M_DEFAULT Same as M_AUX_IO0.
M_AUX_IOn Specifies to use auxiliary input signal n as the trigger

 Additions to MdigHookFunction():

o You can now hook to a GenICam feature change event.

o M_GC_FEATURE_CHANGE. Hooks the function to the event that occurs when a GenICam feature value is
changed on your camera. This usually occurs when a feature or a dependent feature is written.

 Additions to MdigGetHookInfo():

The following allows you to retrieve information about a GenICam SFNC-compliant event. The following information
types are only available if MdigGetHookInfo() was called from a function hooked to a GenICam event using
M_GC_EVENT + M_GC_FEATURE_CHANGE. In addition, the GenICam event must be enabled using
MdigControlFeature(), and the message channel must be supported by your camera.

o M_GC_FEATURE_CHANGE_NAME. Retrieves the name of the GenICam feature that changed. The UserVarPtr
must point to a user allocated array of type MIL_TEXT_CHAR.

o M_GC_FEATURE_CHANGE_NAME_SIZE. Retrieves the size of the name of the GenICam feature that changed.
The UserVarPtr must point to a MIL_INT.

 Additions to MdigGetHookInfo():

The following allows you to retrieve information about a GenICam SFNC-compliant event. The following information types
are only available if MdigGetHookInfo() was called from a function hooked to a GenICam event using M_GC_EVENT +
M_GC_FEATURE_CHANGE. In addition, the GenICam event must be enabled using MdigControlFeature(), and the
message channel must be supported by your camera.

o M_GC_FEATURE_CHANGE_NAME. Retrieves the name of the GenICam feature that changed. The UserVarPtr
must point to a user allocated array of type MIL_TEXT_CHAR.

o M_GC_FEATURE_CHANGE_NAME_SIZE. Retrieves the size of the name of the GenICam feature that changed.
The UserVarPtr must point to a MIL_INT that is the required string length +1.

source, where n is the number of the auxiliary signal. Note
that the specified auxiliary signal can also be a
bidirectional signal set to input (using M_IO_MODE set to
M_INPUT).

M_GRAB_FRAME_BURST_END_TRIGGER_STATE Enables the M_GRAB_FRAME_BURST_END_TRIGGER_SOURCE
source.

M_DEFAULT Same as M_DISABLE.

M_DISABLE Disables the grab frame burst end trigger source.

M_ENABLE Enables the grab frame burst end trigger source.

The following allows you to retrieve information about grab frame burst events. Unless otherwise specified, you
can retrieve these information types if you call this function from within a function hooked to any digitizer event
using MdigHookFunction() or MdigProcess().
M_GRAB_FRAME_BURST_COUNT Retrieves the number of frames grabbed in the multi-frame

buffer.
Value > 0 Specifies the number of frames grabbed.

M_GRAB_FRAME_BURST_END_SOURCE Retrieves the type of event that generated the end of the
frame burst. Multiple events can be set at the same time.
Bitwise operators must be used to verify the presence of a
specific returned value. Possible return values are:

M_BURST_TRIGGER Specifies that trigger signal generates the end of the
burst sequence. To specify the source signal, use
MdigControl() with
M_GRAB_FRAME_BURST_END_TRIGGER_SOURCE.

M_BURST_MAX_TIME Specifies that the frame burst has taken as much time to
complete as the maximum frame burst time. To specify
the maximum time for a frame burst to complete, use
MdigControl with
M_GRAB_FRAME_BURST_MAX_TIME.

M_BURST_COUNT Specifies the number of frames that have been grabbed.
To specify the number of frames in a frame burst, use
MdigControl() with M_GRAB_FRAME_BURST_SIZE.

The following allows you to retrieve information from a data latch. These information types are only available if
MdigGetHookInfo() was called from a function hooked to an end of grabbed frame event using
MdigHookFunction() with M_GRAB_FRAME_END or from the hook-handler function (callback function) of
MdigProcess(). In addition, you must have enabled the data latch to store this information, using MdigControl()
with M_DATA_LATCH_STATE.

2. Supported operating systems

This section lists all the operating systems that the Matrox Radient eV-CL driver supports.

 32-bit and 64-bit Windows® 7.

 32-bit and 64-bit Windows® 8.1.

 32-bit and 64-bit Windows® 10.

3. Location of examples (in the help file)

In the MIL online help, the location information written at the top of examples might not be up-to-date. Use MIL Example
Launcher to find an example on disk.

 Note that you can only use data latches in association with the MIL digitizer allocated using MdigAlloc()
with M_DEV0.

The following values require that you pass the UserVarPtr parameter the address of a MIL_INT64.

M_DATA_LATCH_VALUE + M_LATCHn +
M_VALUE_INDEX(i)

Retrieves the stored data of the specified data latch. If there
are multiple instances of this data (for example, your data latch
is triggered at the end of each grabbed line), use +
M_VALUE_INDEX(i).

Value Specifies the stored data.

M_DATA_LATCH_VALUE_ALL Retrieves all the stored data of the specified data latch.

Value Specifies all the stored data.

M_DATA_LATCH_VALUE_COUNT Counts the number of items stored inside a data latch. Note
that a data latch is reset at every frame event.

Value Specifies the number of instances. Note that a data latch is
reset at every frame event.

Combination constant for M_DATA_LATCH_VALUE.

You can add the following value to the above-mentioned value to specify the instance of the stored information to retrieve.
M_VALUE_INDEX(MIL_INT64 IndexValue) Specifies the instance of stored information to retrieve.

IndexValue: Sets the instance of stored information. For
example, to read the information latched when the last line
finishes being grabbed for a frame, with 1024 lines, the
instance would be 1023.

