
Matrox Imaging Library (MIL) 10 Update 64
Release Notes (USB3 Vision with MIL)

August 2018
 (c) Copyright Matrox Electronic Systems Ltd., 1992-2018.

This document outlines what is new with MIL’s USB3 Vision system and explains the current limitations and
particularities.

It also presents last-minute information that did not make it into the manual or on-line help. Note that this help file
serves to complement your manual. The information found in this file overrides your formally documented
material.

Contents

1. USB3 Vision with MIL
1.1 Differences between MIL 10 Update 64 and MIL 10 Update 30
1.2 What's new in MIL 10 Update 64

1.2.1 New features summary
1.2.2 Additions to the command reference
1.2.3 Bug Fixes

1.3 Differences between MIL 10 Update 30 and MIL 10 Update 19
1.4 What's new in MIL 10 Update 30

1.4.1 New features summary
1.4.2 Bug Fixes
1.4.3 Additions to the command reference
1.4.4 Behavior change
1.4.5 Standard compliance

1.5 Differences between MIL 10 Update 19 and MIL 10 Update 1
1.6 What's new in MIL 10 Update 19

1.6.1 New features summary
1.6.2 Behavior change
1.6.3 Bug Fixes
1.6.4 Documentation
1.6.5 Capture Assistant

2. Known Issues
3. Intellicam bug fixes
4. Supported operating systems
5. Location of examples (in the help file)
6. Troubleshooting

1. USB3 Vision with MIL

1.1 Differences between MIL 10 Update 64 and MIL 10 Update 30
Various bug fixes were applied to MIL's USB3 Vision system. Note that MIL 10 Update 64 is a cumulative update,
including all content from MIL 10 Update 1, MIL 10 Update 19, and MIL 10 Update 30.

1.2 What's new in MIL 10 Update 64

1.2.1 New features summary

 Capture Assistant statistics now include an Endpoint Halt count to help diagnose a cable problem.
Endpoint Halt is equivalent to a USB reset.

 MIL's USB3 Vision system does not require MIL’s non-paged memory for image acquisition.

 Optimizations for very large image acquisition.

 New set of inquires for GenICam feature enumeration.

 Now using GenICam version 3.1.

1.2.2 Additions to the command reference
 Additions to MdigInquireFeature():

 Support for M_FEATURE_ENUM_ENTRY_TOOLTIP + N
 MdigInquireFeature(). Returns the nth enum entry’s tooltip string. The string size can be

inquired by adding the M_STRING_SIZE combination constant.

 Support for M_FEATURE_ENUM_ENTRY_DESCRIPTION + N
 MdigInquireFeature(). Returns the nth enum entry’s description string. The string size can be

inquired by adding the M_STRING_SIZE combination constant.

 Support for M_FEATURE_ENUM_ENTRY_ACCESS_MODE + N
 MdigInquireFeature(). Returns the nth enum entry’s access mode. See

M_FEATURE_ACCESS_MODE in the MIL documentation for details.

 Support for M_FEATURE_ENUM_ENTRY_VISIBILITY + N
 MdigInquireFeature(). Returns the nth enum entry’s visibility value. See

M_FEATURE_VISIBILLITY in the MIL documentation for details.

 Support for M_FEATURE_ENUM_ENTRY_CACHING_MODE + N
 MdigInquireFeature(). Returns the nth enum entry’s caching mode. See

M_FEATURE_CACHING_MODE in the MIL documentation for details.

 Support for M_FEATURE_ENUM_ENTRY_STREAMABLE + N
 MdigInquireFeature(). Returns the nth enum entry’s streamable value. See

M_FEATURE_STREAMABLE in the MIL documentation for details.

 Support for M_FEATURE_SELECTOR_COUNT
 MdigInquireFeature(). Returns the number of features selected by the specified FeatureName

parameter. Note that the FeatureName parameter must specify a selector type feature.

 Support for M_FEATURE_SELECTOR_NAME + N
 MdigInquireFeature(). Returns the nth feature name, as a string, selected by the specified

feature. Note that the FeatureName parameter must specify a selector type feature.

 Support for M_FEATURE_VALID_VALUE_COUNT
 MdigInquireFeature(). Integer and floating point type features can support a fixed list of valid

values instead of the traditional minimum, maximum and increment values.
M_FEATURE_VALID_VALUE_COUNT returns the number of valid values supported. A value
of 0 returned indicates the feature does not support a list of valid values; minimum, maximum

and increment values must be used instead.

 Support for M_FEATURE_VALID_VALUE + N
 MdigInquireFeature(). Returns the nth valid value for an integer of floating point type feature.

1.2.3 Bug Fixes

 More graceful approach to MdigHalt() to avoid disconnecting some cameras.

 Acquisition using chunk mode with image-part disabled is now working.

 The 34 camera limitation was removed.

 Fixed GenICam’s event parser that was broken in MIL 10 Update 30.

 Communication errors will now retry 3 times in accordance with GenCP specification.

1.3 Differences between MIL 10 Update 30 and MIL 10 Update 19
Various bug fixes were applied to MIL's USB3 Vision system. Note that MIL Update 30 is a cumulative update,
including all content from MIL Update 1 and Update 19.

1.4 What's new in MIL 10 Update 30

1.4.1 New features summary

 No new Features.

1.4.2 Bug Fixes

 Fixed an error in MdigAlloc(M_GC_DEVICE_USER_NAME) caused when the name was programmed
without power cycling.

 Fixed a synchronization lost event at the end of MdigProcess().

 Improved packed and YUV444 pixel format support.

 Fixed camera access errors in MdigHookFunction(M_CAMERA_PRESENT).

 Fixed MdigInquire (M_SOURCE_SIZEX/Y) such that the camera Width/Height can be returned
without a scaling factor.

 Fixed race condition when grabbing using multiple Host controllers. This previously caused a driver
exception.

 Fixed acquisition using multiple cameras (n>4) with an event enabled. This previously caused a driver
exception.

1.4.3 Additions to the command reference
 Additions to MdigInquireFeature()/MdigControlFeature()

 The FeatureType parameter has been changed to UserVarType. This was done to simplify writing
code with MdigControl/InquireFeature(). UserVarType must always reflect the type of the pointer
passed to the UserVarPtr parameter. Legacy code is transparently supported, but we recommend
you update your code. Note that M_TYPE_REGISTER now becomes M_TYPE_UINT8,
M_TYPE_ENUMERATION now becomes M_TYPE_INT64 or M_TYPE_STRING, and
M_TYPE_COMMAND now becomes M_DEFAULT. Data type conversions are made, whenever
possible, in cases where the feature’s “native” data type is different than the UserVarType supplied.
Regardless of a feature’s “native” data type it can always be read as a string. See Board-specific
examples for details.

The following is a list of example calls using the new UserVatType:

- MdigControlFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“Width”),
M_TYPE_INT64, &Int64Var)

- MdigControlFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“Gain”),
M_TYPE_DOUBLE, &DoubleVar)

- MdigControlFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“ReverseX”),
M_TYPE_BOOLEAN, &BoolVar)

- MdigControlFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“PixelFormat”),
M_TYPE_STRING, MIL_TEXT(“Mono8”))

- MdigControlFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“LUTValueAll”),
M_TYPE_UINT8, Uint8Array)

- MdigControlFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“AcquisitionStart”),
M_DEFAULT, M_NULL)

- MdigInquireFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“Width”),
M_TYPE_INT64, &Int64Var)

- MdigInquireFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“Gain”),
M_TYPE_DOUBLE, &DoubleVar)

- MdigInquireFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“ReverseX”),
M_TYPE_BOOLEAN, &BoolVar)

- MdigInquireFeature(MilDigitizer, M_FEATURE_VALUE + M_STRING_SIZE, MIL_TEXT
(“PixelFormat”), M_TYPE_MIL_INT, &MilIntVar)

- MdigInquireFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“PixelFormat”),
M_TYPE_STRING, MilTextCharArray)

- MdigInquireFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“LUTValueAll”),
M_TYPE_UINT8, Uint8Array)

 M_FEATURE_USER_ARRAY_SIZE() can now be used with MdigInquireFeature when the data type
returned is a string or an array of bytes (register). The M_FEATURE_USER_ARRAY_SIZE() macro
is used to pass the size of the user-allocated buffer passed to MdigInquireFeature's UserVarPtr
parameter. M_FEATURE_USER_ARRAY_SIZE() is passed using the UserVarType parameter. See
MilGige board specific example for sample usage.

The following is a list of example calls using M_FEATURE_USER_ARRAY_SIZE():

- MdigInquireFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“PixelFormat”),
M_TYPE_STRING + M_FEATURE_USER_ARRAY_SIZE(N), MilTextCharArray); N
being equal to the number of MIL_TEXT_CHAR in the MilTextCharArray.

- MdigInquireFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“LUTValueAll”),
M_TYPE_UINT8 + M_FEATURE_USER_ARRAY_SIZE(N), Uint8Array); N being equal to
the number of Uint8 in the Uint8Array.

 M_FEATURE_ENUM_ENTRY_DISPLAY_NAME can now be used to inquire possible enumeration
string entry to use for display purposes. See M_FEATURE_ENUM_ENTRY_NAME in the MIL
documentation.

 M_FEATURE_VALUE_AS_STRING is now deprecated.

- To read a feature’s value as a string and get the required string length use:

 MdigInquireFeature(MilDigitizer, M_FEATURE_VALUE + M_STRING_SIZE,
MIL_TEXT(“Width”), M_TYPE_MIL_INT, &MilIntVar);

- To read a feature’s value as a string use:

 MdigInquireFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“Width”),
M_TYPE_STRING+M_FEATURE_USER_ARRAY_SIZE(ArraySize),
MilTextCharArray);

- To write a feature’s value from a string use:

 MdigControlFeature(MilDigitizer, M_FEATURE_VALUE, MIL_TEXT(“Width”),
M_TYPE_STRING, MIL_TEXT(“1024”));

 M_FEATURE_CHANGE_HOOK. Identifies the specified FeatureName to trigger the
M_FEATURE_CHANGE hook callback. You must be hooked to the M_FEATURE_CHANGE hook
type using MdigHookFunction().

 Additions to MdigHookFunction()
 When hooking to a GenICam feature change event (see enumfeatures.cpp board-specific example):

- M_GC_FEATURE_CHANGE can be used as a hook type. The hook triggers when a
GenICam feature is invalidated. This usually occurs when a feature or a dependent
feature is written.

 Additions to MdigGetHookInfo()
 When hooking to a GenICam feature change event (see enumfeatures.cpp board-specific example):

- M_GC_FEATURE_CHANGE_NAME can be used from a M_GC_FEATURE_CHANGE
hook function. The function returns the name of the GenICam feature that triggered the
hook. UserVarPtr must point to a user allocated array of type MIL_TEXT_CHAR.

- M_GC_FEATURE_CHANGE_NAME_SIZE can be used from a
M_GC_FEATURE_CHANGE hook function. The function returns the number of
characters in the string returned by M_GC_FEATURE_CHANGE_NAME. UserVarPtr
must point to a MIL_INT.

1.4.4 Behavior change

 Default color buffer type changed from RGB24 to BGR32 for an optimal display performance.

 In the case where a synchronization lost occurs, the driver automatically attempts to resynchronize
the image stream with the camera. This resets the BlockID to 0.

1.4.5 Standard compliance

 GenCP 1.1.

 USB3Vision 1.0.1.

 GenICam 3.0.

1.5 Differences between MIL 10 Update 19 and MIL 10 Update 1

 Camera Assistant can now be used to manipulate USB3 Vision devices and to diagnose some setup
problems.

 The MIL Help now has information about MIL’s USB3 Vision system.

 New features and bug fixes to MIL's USB3 Vision system.

1.6 What's new in MIL 10 Update 19

1.6.1 New features summary

 Added support for MIL’s USB3 Vision system in Capture Assistant.

 Added support for streaming Monochrome and Bayer data of 10- and 12 bit packed pixel format.

 Added support for MdigAlloc(M_GC_DEVICE_USER_NAME).

 Added support for MdigAlloc(M_GC_MANIFEST_ENTRY()).

 Added support for MdigAlloc(M_GC_XML_DOWNLOAD_SKIP and
M_GC_XML_FORCE_DOWNLOAD).

 Added support for MdigInquire(M_CAMERA_PRESENT).

 Added support for MsysHookFunction(M_CAMERA_PRESENT).

 Added support for MdigHookFunction(M_CAMERA_PRESENT).

 Added support for MdigInquire/MsysGetHookInfo(M_GC_UNIQUE_ID_STRING).

 Added MultiCamera hardware-specific example.

 Added acquisition statistics to be displayed in Camera Assistant.

1.6.2 Behavior change

 If two cameras are used and M_DEV0 camera is removed from the PC, M_DEV1 camera will be
remapped as M_DEV0, as if M_DEV1 and M_DEV0 were not allocated on their associated cameras.

 MdigGetHookInfo(M_GC_FRAME_BLOCK_ID) Called from within MdigProcess callback is now
reporting the data trailer packet’s BlockId instead of the data leader packet’s BlockId.

1.6.3 Bug Fixes

 Fixed MdigInquire(M_PROCESS_FRAME_MISSED) which previously always returned 0.

 Fixed MdigAlloc() failure with certain cameras.

 Fixed issue regarding cameras sometimes not being detected after falling into hibernate/sleep mode.

 Fixed the USB3 Vision Diagnostic Tool. Previously, the tool would enter an endless loop when dealing
with certain cameras.

 Fixed MdigAlloc() operation that failed when one or more features listed in the specified DCF (Digitizer
Configuration File) was not writeable in the camera.

 Fixed YUV 411 and 444 pixel formats that previously caused corrupted images.

 Fixed MdigGrab() with triggers enabled. Previously, this needed two triggers to grab one frame.

 Fixed a driver exception that was caused when starting a grab with certain cameras under Windows
7.

 Fixed MdigGrab() failure with an error message that was caused by an unaligned image size.

 Fixed MdigGetHookInfo(M_CORRUPTED_FRAME, M_GC_FRAME_BYTES_RECEIVED,
M_GC_FRAME_LINE_COUNT, M_GC_FRAME_STATUS_CODE) which previously did not return the
appropriate value.

1.6.4 Documentation
Added USB3 Vision-specific information to the MIL Help Reference and MIL Help Hardware-specific
Notes.

1.6.5 Capture Assistant

 Added USB3 Vision support.

 Added support for DCF selection.

 Added a detailed Tree View; displays entire Ethernet and USB ecosystems.

 Added a Statistics Report module. Generated Statistics reports are automatically included in a
SysInfo.

 Added command-line dump mode. Used when generating a SysInfo.

 Added various diagnostics.

 Device triggers can now be controlled by the Feature Browser or by the triggers section of the
Acquisition Properties tab.

 Added GigE Vision multicast monitor support.

 Added network adapter configuration parameters (Jumbo Packets, Receive Buffers, Interrupt
Moderation) when selecting a network adapter from the Acquisition Device's tab.

 Network Adapter statistics are now generated using Windows performance counters.

2. Known Issues

 Matrox Inspector needs an image width that is a multiple of 4 pixels. Not following this rule will make
Inspector crash or report errors.

 BGR or RGB, packed (10 or 12 bits) pixel formats are not supported.

 If you are experiencing synchronization lost errors or image corruption under Windows 7 with
Renesas USB 3.0 Host Controller, make sure you are using the Host controller driver version 2.1.39.0
or later for the 2.x series, and 3.0.23.0 or later for the 3.x series.

 When using events, if a camera disconnects (M_CAMERA_PRESENT hook gets called), in sequence
MdigHook(M_UNHOOK), MdigFree()/MdigAlloc() MdigHook() must be called instead of only
MdigProcess(M_START/M_STOP), as shown in the Hardware specific example, MultiCamera.cpp.

 FLIR (Point Grey) cameras with old firmware on Windows 10 need to be unplugged before
uninstalling MIL. Failure to do so can cause a variety of post uninstall USB problems.

 Building the MIL examples using Visual Studio 2015 or 2017 also requires the presence of Windows
SDK version 8.1, which is installed from the Visual Studio setup.

 Windows' automatic 8.3 file name creation needs to be enabled in order for the MIL installer to access
the temp folder when the user name contains a space. This option allows Windows to create short
file/folder name aliases for ones with long names for programs, such as the MIL installer, that don't
support spaces in the file/folder names. Alternatively, the MIL installer needs to run from a user
account that belongs to the administrators group and has no spaces in it. Note that the same applies
for uninstalling MIL.

 The required Visual C++ 2017 Redistributable needs the presence of KB2919442 and KB2919355.
These will need to be obtained and applied before installing this update.

 The MIL update requires a Windows installation that supports device drivers with SHA-2 digital
certificates. Consequently, some Windows 7 installations will require that a Windows Monthly Rollup
be applied before the MIL update can be installed.

 During driver installation under Windows 7, you might continue to be asked to trust Matrox software

after selecting the option to “Always trust software from MATROX ELECTRONIC SYSTEMS, LTD”. To
avoid being asked mutliple times, refer to Microsoft KB2921916.

3. Intellicam bug fixes

 With Intellicam, you can now modify a DCF while the feature browser is open, when working with a
Camera Link camera, accessed using the GenICam CLProtocol. However, the feature browser will no
longer work with Teledyne DALSA Camera Link cameras using the GenICam CLProtocol with Sapera
software version 7.3 or lower. In these cases, we recommend updating the Sapera software to version
7.4 or higher.

 Fixed possible Intellicam crash when clicking on "Dump state to DCF" in the camera configuration tab,
when the camera contains a LUT.

 Fixed an issue where error messages would not be displayed when starting the feature browser.

 Fixed possible Intellicam crash when aborting a grab from a triggered camera that is not receiving any
triggers.

 Fixed non-GenICam systems that could not grab after MIL 10 Update 1 was installed.

 Fixed Intellicam failure to load a DCF that was saved with the "Dump state to DCF" button.

4. Supported operating systems

This section lists the supported operating systems.

 32-bit Windows® 71

 64-bit Windows® 71

 32-bit Windows® 10

 64-bit Windows® 10

1. If using Windows 7, you must install the USB 3.0 host controller driver prior to using MIL's USB3 Vision
system.

5. Location of examples (in the help file)

In the help file, the location information written at the top of examples might not be up-to-date. Use MIL Example
Launcher to find an example on disk.

6. Troubleshooting

 Your camera must be USB3 Vision compliant for it to work with the Matrox USB3 Vision driver. For
more information, refer to http://www.visiononline.org/vision-standards.cfm.

 Note that a diagnostic tool is available from MilConfig to troubleshoot the connection to USB3 Vision
cameras. Capture Assistant can also be used to diagnose USB issues and generate a usage statistic
report.

 While acquisition is in progress with any software, start Capture Assistant, and choose the desired
camera. In the Acquisition Statistics tab, if the Total Endpoint Halt increments while the acquisition is
in progress, make sure the camera does not share USB bandwidth with another device, or try
changing the USB 3.0 cable.

